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Abstract—A new semi-analytical procedureis employed for the problem of freezing a saturated liquid inside a
spherical container and including the effect of radiation at the container surface. Generally moving boundary
problems of thistype involve a boundary layer analysis. The approximation scheme employed here avoids this
complication and gives rise to successive estimates of the time t for complete solidification of the sphere. In
addition an integral formulation is adopted to independently establish bounds for ¢.. The upper and lower
bounds obtained are the standard order one corrected estimate of . and the pseudo steady-state estimate of .,
respectively. Numerical values of the successive estimates for ¢, indicate firstly satisfactory convergence and
sccondly that they are indeed consistent with the bounds independently established. Numerical values
obtained for the position of the moving front are in agreement with previous results arising from both a
completely numerical solution and an alternative semi-analytical solution of the problem.
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NOMENCLATURE

radius of spherical container
functions appearing in assumed
expansion for ¢(x, y)

heat capacity of solid

heat transfer coefficient

thermal conductivity of solid

latent heat of fusion

polynomial expression in x of degree
n—2(nz2)

position radius

dimensionless position radius

radius of moving front
dimensionless radius of moving front
time

dimensionless time

time to complete solidification
pseudo steady-state estimate of ¢,
first-order corrected estimate of ¢,
approximating estimates to ¢, deduced
from solution

fusion temperature

coolant temperature

temperature of solid

dimensionless temperature

pseudo steady-state estimate for T(r,t)

Ty(r, 1), Ty(r, t) higher order corrections to pseudo

u(r,t)

X,y

steady-state estimate

new dependent variable defined by
equation (8)

new independent variables defined by
equation (7)

Greek symbols

o f
7.0
2
¢
P

constants defined by equation (4)
constants defined by equation (16)
variable defined by equation (22)
dummy integration variable
density of solid

¢(x,y)  new dependent variable defined by
equation (9)

¢1(x,y) pseudo steady-state estimate for ¢(x, y)

¢s(x,y) first-order correction to pseudo state-
state estimate

w variable defined by equation (31)

INTRODUCTION

THE MOVING boundary problem associated with
freezing liquids inside containers is relevant in many
industrial processes such as casting thermoplastics or
metals, freezing foods and producing ice. Generally
such problems do not admit closed analytical solutions
and the governing equations must be solved either
numerically or by an approximate semi-analytical
procedure. The problems of freezing a saturated liquid
inside a sphere and including radiation at the surface
has been studied by a number of authors [1-3]. Semi-
analytical techniques are employedinrefs.[1,2] whilea
fully numerical treatment is given in ref. [3]. In general
owingto the occurrence of a thermal boundary layer as
the moving front approaches the centre of the sphere,
the full mathematical analysis of such problems
involves a fairly complicated asymptotic boundary
layer approach (see for example refs. [4-6]). Here we
present a new approximate analytical solution to the
problem which is meaningful up to and including the
time ¢ to complete solidification and therefore avoids a
boundary layer analysis. Moreover, we independently
establish upper and lower bounds for t..

Consider a molten material inside a spherical
container of radius a and at its uniform fusion
temperature T;. Suppose the containerissurrounded by
acoolant which is maintained at constant temperature
T, then assuming constant physical properties of the
solid and negligible volume changein solidification the
temperature T*(r*, t*)of the solid and the radius R*(t¥)
of the moving front can be described by the following
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system:
t* <62T* rg ?G_T_) RM*) < r* <a,
T @) =h{T*@M-T} (1)
TR, ] =T, )= G

where R*(0) = a. In terms of the following dimension-
less variables

kt*
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system (1) for T(r,t) and R(t) becomes
éT 6*T 20T

=0———+——— Rty<r<1,

ét  or* reér’

nln+p (10_1 3)
dR

T[R (t)’ t] = 0’ E,

o [R@),1] = —a
cr

where R(0) = 1 and theconstantsaand ffaredefined by

L k
_qn—nrﬁ_mi
Clearly since T, < T* < T; we have 0 <T<1 for
Ry <r< 1.

In the following section we outline a procedure for
obtainingan approximate analyticalsolution of system
(3). This procedure is based on one given recently by
Davis and Hill {7] for system (3) with the constant f
identically zero (that is,no radiation at the surface). The
case f# =0 was originally studied using a regular
perturbation series of the form [8]

T(r,1) = Ty(r,))+ Ty(r, /o + Ty(r, 1)/e* + O(a™3). (5)

@

However, thetermsoforder« ™ ! and " 2aresingularas
R{tyapproaches zero and consequently a full boundary
layer analysis is required (see refs. [4-6, 9]}. By
appropriate choice of variables this difficulty is avoided
in ref. [7] and it would seem worthwhile applying the
method of ref. [7] to the case when the constant § is
strictly non-zero. We find that the mathematical details
are quite different to those given in ref. [7] and
moreover, the results of ref. [7] are not contained as a
special case in the present analysis.

In subsequent sections we summarize the main
results of the calculation leading to the motion of the
moving boundary and we ‘indicate how the result
obtained relates to the standard pseudo steady-state
and order one corrected motions. We find that these
latter approximations to the motion arise from the
analysis given here by assuming that certain terms in
the solution are in fact the first few terms of a geometric
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series which on summation yields the required results.
For completeness we also give an independent
derivation of the pseudo steady-state and order one
corrected motions which are formally obtained by
assuming a series expansion of the form of equation (5)
and consistently neglecting terms of order «~2 and
higher in comparison to the two leading terms.

From an independent integral formulation of the
problem similar to those given by Shih and Chou [2]
and Theofanous and Lim [10] we prove that ¢, satisfies
the inequalities

(1+2p)2/6 < t. < (1+2p)(x+1)/6. (6)

We observe that the lower bound is merely the pseudo
steady-state estimate for the time to complete
solidification while the upper bound is the order one
corrected estimate formally obtained from the first two
terms of series (5). The relevant details of this proof are
noted in a subsequent section. In the final section
numerical values for the position R(t) of the moving
front are shown to be in close agreement with those of
Shih and Chou [2] and Tao [3].

METHOD OF SOLUTION

In this section we describe briefly the solution
procedure which involves reducing the moving
boundary problem (3) to one with fixed boundaries. We
introduce new independent variables xand y defined by

x=(~1)/[R(-1], y=R@, Y]

and after making the standard transformation

T(r,1) = u(r,0)/r, ©®
we suppose
u(r, 1) = ¢(x, ). ®
It is now a simpler matter to show that system (3)
becomes
w2h =22 —o-nZ]
o

B3 ON+U=Br—1)¢(0,y) =

o¢ _

-0, 109

dy
1, = —ay(y—1 .
#(1,y) -4
and y(0) = 1.In(10), the arguments of ¢ and its partial
derivatives are understood to be (x, y) unless otherwise
indicated. Moreover, we remark that in the derivation
of (10), we have utilized (10),.
The above non-linear system can be formally solved
by assuming a series solution for ¢(x, y) of the form
dlx,y) = 3, A1), (1)
n=0
where A4,(x) denotefunctions of x only. From equations
(10) and (11) we find that the functions A,(x) are
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determined by solving

A = o™ Ay(1)xAp,
1
Ag+d, =~ Z ADIxA, - j—(n—j)A,_ ] (1>1),

J

(12)

subject to the boundary conditions
Ax0)=0, AN =0 (n=0),

BAY0) +(1—P)Ae0) =1,
BA0)+(1=B)A,_(0) =0 (n>2),

(13)

where primes denote differentiation with respect to x
and in (12) the argument of 4, is understood to be x
unless otherwise indicated. From (10), and (11) we find
that the motion of the moving front is obtained from

-]

d
Y A(y~1y = —ay(y—l)d—y,

(14)

and y(0) = 1. From (12) and (13) we find that Ay(x) is
identically zero while the remaining A,(x) are obtained
simply by integrating equations of the form

An(x) = py(x),

where p,(x) denotes a polynomial expression in x of
degreen—2[n = 2,p,(x) = 0]. Thisisin contrast to the
problem f =0 which gives rise to confluent
hypergeometric solutions for A,(x) (see ref. [7]). The
final results for A,(x) are given in the following section.

(15)

SUMMARY OF RESULTS

Introducing new constants y and § defined by
y=alf-1), 6=2-o, (16)

we find that the first six functions A4,(x) are as follows:

Ayx) =0, A,(x)=

B
A3(x) =

(-1
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In particular the values of A;{1) which are needed to
determine the motion of the moving front are given by

A)=0, Ayh=p"",
A1) = (1=y)/ap?,  AY1) = (7 —47+8)/«*B>,
A1) = (6 +362+3—~15y8 =373+ 3152 — 16y)/323 %,
W(1) = (37* = 657> +112y% — 46y + 38°
+352 424 116 — 4175+ 46725 — 1875%)/3x° 5.
(18)

We make use of these results in the following section to
determine an approximate expression for the motion of
the moving front.

MOTION OF THE MOVING BOUNDARY

From (14), (18) and the initial condition y(0) = 1 we
can deduce the following series for the motion of the
moving boundary

—1)?
t=—af (y—l)+(l+2y—5)(y ).
2af3
( -1y o=
+(5y3—52~,’2+28y—5—552—-25+25}‘6)

-0°
S 19
g T 19)
In particular an approximating expression for the time
t. to complete solidification can be obtained from (19)
by setting y zero, thus

N (1+2y~5)
t"'—aﬁ{l__——hﬁ
(P+3y—1-y0) (@Ey—y*—9)
312/;2' 313,33
(5,’ —5292 +28y—5— 552—25+25/5)
152°4% i
(20)
9]
A) =) 1),

( 2ﬁ3 {yx +(30— 11y)x+(35—l4/+6,f2)}

(10452 — 5675 — 68y + 56 + 1262 + 12)x — (247% — 16072 + 6875 + 68y — 55 — 1252 — 12)},

Al = Sk (=005 (=31 — )<
A = s

1202

“B5 {y(dy — 8)x* +(40y + 7990 — 136y* — 10— 156%)x>

+(60y +2007° + 8975 — 25672 — 10— 1552 + 2075 — 100725)x2
+(— 1000y® — 940y — 89175 + 2264y + 800725 — 340752 + 605° + 7562 + 2205 + 50)x

+(1207% — 18007° -+ 1140925 — 1000y — 91678 — 400752 + 260432 ++ 6053 + 7552 + 2208 + 50)}.

(17)
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Numerical values of various estimates for ¢, obtained
from (20) are given in the final section.

We observe from (19) on using (16) and neglecting
terms of order «~* and higher

- -1
= —apfo-0+ - T 1]
-1 B-Hp-1y°
+{ >~ 35 [l—}.+}.2+...]}+0(1),
(21)
where 2 is defined by
A=(B-1y—-1)/8. 22

Itis of interest to note that the exact motion correct up
toorder ™ ! can be deduced from (21) by assuming that
the series in the square brackets involving A is the

geometric series with sum (1 4+ 2) ! (assuming || < 1). '

Simplifying the result we obtain from (21)

(= _%{2(ﬁ—l)y3+3y2—(2ﬁ+1)}

" (=17 {(Zﬂ'*‘ N+(B—-1y
6 14(f—-1)y

which can of course be deduced more directly from an
assumption of the form (5). For completeness the
essential details of such a calculation are given in the
following section using the (x, y) variables and equation
{10) for ¢(x, y).

Finallyin this section we observe that the first term of
(23) is precisely the pseudo steady-state result and
moreover that the pseudo steady-state expression for
¢(x,y) can be seen to arise from (11) and (17) by
retaining only the termsof order oneinexpressions(17).
We find that

(x=1y-1)
B
(1=24+22-33 4244 ) +o(l), (24)

} +o(l), (23)

o(x,y) =

where 2 is given by (22). Again on assuming the series
involving 2 is the geometric series and that |[1] <1 we
obtain in a straightforward manner

=Dy—1)
) = T B—Ty]

which is precisely the pseudo steady-state result.

+o(1), {25)

DIRECT DERIVATION OF
FIRST ORDER CORRECTION

If for large a we assume

B(x,¥) = ¢1(x, )+ Palx, y)a+o(a™?),

where ¢,(x, y) is the pseudo steady-state result givenin
(25) then from (10) we find that ¢,(x, y) is obtained by

(26)
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solving

¢y _ =1 [B+B—1)x(y—~1)]
ox* yl1+@B-1y71 '

@7
a
ﬁ_(%{((),y)_l_(l_ﬁ)(y—1)¢2(0,y) =0, ¢y(L,y)=0.

The final result for ¢,(x,y) is
(x=Dy—1?
6y[1+(B—1y)*
x {(B—1)x*(y—D1+(B-1y]
+[1+(B—DyI[2B+ 1) +(B—-1)ylx

¢x,¥) =

+BI2B+1)+(B—1)yl}. (28)
Now from (10), and {26) we have
0¢, 1 d¢, _ . dy
E(la}’)*‘aﬁ(l,}’)— a)(y—l)dt, (29)
which using the above results simplifies to give
1 o=-)F+pote’)  dy
P Jaywt =Y (30)
where o is defined by
w=1+(B-1y. 31)

Onrearranging equation (30), neglecting terms of order
a~2 and higher and using

B+ Bu+o® = (ﬁ;:zs),

(32

we can deduce

dt =< —ayw+ ! w—-ﬁ dy+o(1). (33)
U e T e f T

This equation readily integrates to yield precisely
equation (23). The estimates for the time to complete
solidification arising from the pseudo steady-state
assumption and the first order correction are discussed
further in the final section.

UPPER AND LOWER BOUNDS FOR ¢,

On multiplying (3), by r?, integrating the resulting
equation with respect to r from R(¢) to r and using (3),
we obtain after a division by r?

aT R()\?dR
'—(r,t)'l'a(—) —d-t—

or
_ r c 2 aT
~J.Rm (;) -aT(f, dé. (34

A further integration of this equation with respect to r
from R(t) to r and using (3), yields

11
T(r, 1) = {aR(z)Z (; - W)

d r 1 1 drR
a6 3) o0 9
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where 8/0R denotes partial differentiation with respect
to R withr and R as independent variables. From (34),
(35) and the surface boundary condition (3), we can
deduce

{aR(t)[(l —BAR()—1]

0 v dR
+ ﬁ“‘m SHB—1E+ 11T, t)dé)}? =1 (36

From equations (35) and (36) on eliminating dR/dt we
obtain the following integral formulation of the
problem, namely

1 1
{(XR([)Z (; - —R_(l_)>+ F
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Table 1. Numerical values of estimates defined by equations
(40) and (41) for various values of e and 8 = 5.0

T(r,t) =

which is similar, although not identical to integral
formulations given in ref. [2] for § £ 0 and in ref. [10]
for B = 0. We also observe that the pseudo steady-state
solution for the problem emerges immediately from
equation (37) by retaining only the « terms in both the
numerator and the denominator of equation (37).

Moreimportantly we observe that equation (36) can
be formally integrated immediately to give the
following expression for the motion of the moving
boundary, namely

t= % [2(1=ARE* —3R(E* +(1+2P)]

1
+1  SB-DE+1TE,9de, (38)

R(1)

where we have used R(0) = 1. Thus in particular for ¢,
we have

t.=

1
( +2ﬁ)+L ¢LB—DE+1IT(E, t) dE, (39)

AR

and the inequalities (6) follow immediately from
equation (39) on making use of 0 < T{r,t) < 1 and
noting that f is non-negative.

1.0

0.8

{aR(t)[(l —BR(O—-11+ %(L( ) SHB—DE+1ITE ) df)}

tye fz t3 tye 1278
« (40) (40) (40) 41) (41)
0.5 1.55 1.42 1.17 0.92 2.75
1.0 2.53 2.55 2.38 1.83 3.67
2.0 440 4.51 447 3.67 5.50
50 9.92 10.09 10.17 9.17 11.00
10.0 19.09 19.28 1941 18.33 20.17
1000 184.1 184.3 184.5 183.3 185.2
| r 1 1
—E(J & (E—;)T(f,t)d‘f)}
0 (37

7. NUMERICAL RESULTS

From (20) we obtain the following estimates for the
time ¢, to complete solidification

. (1+2y=9)  (*+3y—1-99)
by = aﬁ{l 2aﬂ + 312ﬂ2 ’
- (1+2y-9)
th_aﬂ{l zap
(2 +3y—1-79) _(47—v’—5)}
32242 326§
B X (40)
P o 1 1+27-9)
3¢ — 2dﬁ
(P +3y—1-39)  @y—y*—9)
312132 313133
. (5% —52y% + 28y — 5— 552 —25+25y6)
15567 '

From(23)withy = 0 we obtain the pseudo steady-state
and first order corrected estimates to ¢, namely

tie =aB+1)/6, t;.=(a+1)2B+1)/6. (41)
Numerical values of the above estimates are given in
Table 1 for various values ofx and f = 5.0. Firstly these

06
&

T 04

02

o

t/a
F1G. 1. Variation in R(f) as given by (19) with t/x (for @ = 2 and three values of ). This work +++++--+ , Shih and
Chou [2] , Tao [3] ———.
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@
F1G.2. Variationin R(t) as given by (19) with t/x (for« = 10and three values of ). This work -+ +++--- ,Shihand
Chou [2] , Tao [3] ———.
results indicate reasonable convergence of the REFERENCES

estimates I, ;. and f;, and secondly they are
consistent with 1,, and ¢, as upper and lower bounds,
respectively. As far as the authors are aware these
bounds have not been noted previously and may be
useful in a practical context.

Figures 1 and 2 show the variation of position R(r)
with time for « = 2 and 10, respectively, and three
values of . The numerical values based on (19) are
clearly in general agreement with those of refs. [2, 3].
We note, however, the discrepancies for the time to
complete solidification with this work and Shih and
Chou[2]inthecasea = 2and f§ = 4. This observation
is consistent with comments of Shih and Chou [2] who
indicate their semi-analytical procedure is more
accurate for small 8. In contrast series (19) and (20) are
seen to converge more rapidly for large f and therefore
in this sense the procedure described here is
complementary to that of Shih and Chou [2].

Acknowledgements—The authors are grateful to Gregory B.
Davis for helpful comments and Jeffrey N. Dewynne for
assistance with the proof of inequalities (6). They also wish to
acknowledge the comments of a referee of an earlier version
which led to a materially improved presentation of the paper.

10.

. M. S. Selim and R. C. Seagrave, Solution of moving-

boundary transport problems in finite media by integral
transforms. 11. Problems with a cylindrical or spherical
moving boundary, Ind. Engng Chem. Fundam. 12, 9-13
(1973).

. Y.P.Shihand T.C.Chou, Analytical solutions for freezing

a saturated liquid inside or outside spheres, Chem. Engng
Sci. 26, 1787-1793 (1971).

. L. C. Tao, Generalized numerical solutions of freezing a

saturated liquid in cylinders and spheres, A.I.Ch.E. J1 13,
165-169 (1967).

. D. S. Riley, F. T. Smith and G. Poots, The inward

solidification of spheres and circular cylinders, Int. J. Heat
Mass Transfer 17, 1507-1516 (1974).

. K. Stewartson and R. T. Waechter, On Stefan’s problem

for spheres, Proc. R. Soc. Lond. A348, 415-426 (1976).

. A.M.Soward, A unified approach to Stefan’s problem for

spheres and cylinders, Proc. R. Soc. Lond. A373, 131-147
(1980).

. G. B. Davis and J. M. Hill, A moving boundary problem

for the sphere, IMA J. Appl. Math. 29, 99-111 (1982).

. R. 1. Pedroso and G. A. Domoto, Perturbation solutions

for spherical solidification of saturated liquids, J. Heat
Transfer 95, 42-46 (1973).

. R. 1. Pedroso and G. A. Domoto, Inward spherical

solidification—solution by the method of strained
coordinates, Int. J. Heat Mass Transfer 16, 1037-1043
(1973).

T. G. Theofanous and H. C. Lim, An approximate
analytical solution for non-planar moving boundary
problems, Chem. Engng Sci. 26, 1297-1300 (1971).

CONGELATION D'UN LIQUIDE SATURE DANS UNE SPHERE

Résumé—On emploie une procédure semi-analytique pour le probléme de la congélation d’un liquide saturé
dansunréservoirshérique enincluantl'effet du rayonnement a la surface. Les problémes de frontiére mobile de
ce type utilisant généralement une analyse de couche limite. Le schéma employé ici évite cette complication et
conduit a des estimations successives du lemps ¢, de solidification compléte de la sphére. Une formulation
intégrale est adoptée pour établir indépendamment des liens pour .. Les liens supérieur et inférieur obtenus
sontrespectivement 'estimation corrigée d’ordre un et 'esimation de pseudo-état permanentdet.. Les valeurs
numériques des imations successives de f, montrent une convergence satisfaisanie et aussi une cohérence avec
les liens établis indépendamment. Les valeurs numériques obtenues pour la position du front mobile sont en
accord avec des résultats antérieurs obtenus par une solution complétement numérique et par une solution
semi-analytique alternée.
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ERSTARREN EINER GESATTIGTEN FLUSSIGKEIT INNERHALB EINER KUGEL

Zusammenfassung—Ein neues halbanalytisches Verfahren wird auf das Problem des Gefrierens einer
gesittigten Fliissigkeit in einem kugelférmigen Behilter angewandt, wobei der Strahlungseinflu der
Behalteroberfliche berticksichtigt wird. Im allgemeinen erfordern derartige Probleme mit fortschreitender
Grenzfiiche eine Grenzschichtanalyse. Das Naherungsverfahren, das hier angewandt wird, vermeidet diese
Komplikation und erméglicht die sukzessive niherungsweise Berechnung der Zeit ¢, fiir die vollstindige
Verfestigung der Kugel. Zusitzlich wird eine Intergralformulierung herangezogen, um unabhingig die
Grenzen fir ¢, zu berechnen. Die oberen und unteren Grenzen sind der verbesserte Niherungswert erster
Ordnung fiir r, bezichungsweise der quasistationare Niherungswert von t.. Die numerischen Werte der
sukzessiven Naherungsrechnung fiir 7, zeigen erstens eine befriedigende Konvergenz und stimmen zweitens
gut mit den unabhingig ermittelten Grenzen iiberein. Die Zahlenwerte fiir die Position der fortschreitenden
Erstarrungsfront stehen in Einklang mit friiheren Ergebnissen, die einmal aus einer vollstindig numerischen
Lésung und auBerdem aus einer alternativen halbanalytischen Losung des Problems stammen.,

3ATBEPAEBAHHUE HACBIIEHHOH XUAKOCTH BHYTPH CAHEPHI

Aunoraima—Hcnonssyercs Hopas npHONMAKEHHAS METOOHKA PpelEHHS 3alayH  3aTBepleBanus
HACBHILUEHHOT XHIKOCTH BHYTPH chepHueckoii 000I04KH € Y4eTOM BIMSHHA M3NYHEHHs, Nafarollero
Ha ee nosepxHoCTh. Kak npaBuno, npn pewedsy 3anad Takoro THna € MOABHMANON rpaunueii
Henoas3yercs npubaikenne norpannysoro ciaos. [Ipuasensemas B paboTe annpoxcHMauHoHHaf
CXeMa M03BOAET HCKIIOYHTD ITOT JTall if MOIYyYHTh MOWICAOBATEAbHbIE OLEHKH BPEMEHH /¢ 0AHOIO
3aTeepaesanis chepbl. Kpome TOro, OTAEIbHO METOXOM MHTErPHPOBAHHS ONMpPeleieHbl Npeaeisl
Jnavennil .. Bepxumii npeacrasaser coboii oObIYHYIO CKOPPEKTHPOBAHHYHO OUEHKY !, NEPBOrO
NOpsAka, a HHAHHI — NCEBHOCTALHOHAPHYIO. UHCICHHBIC 3HAYEHHR MOCJCIOBATEAbHBIX OUEHOK /.
CBHAETEILCTBYIOT, BO-IEPBLIX, 00 YIOBJIETBOPHTENLHOI CXOMHMOCTH M, BO-BTOPbIX, O TOM, 4TO OHH
ACHCTBHTEILHO COMNIACYIOTCA C NpeRelaMH, ONpencifseMbIMH HE3ABHCHMBIM MeToNoM. YHCIeHHbIe
3HAYEHHA, TOJYy4ECHHblE NPH ONpeoeieHHH noxoxeHus JBHKYywerocs ¢ponra, cormacylorces ¢
pe3yNbTATaMH, MOJY4YEHHBIMH paHee.
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