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Abstract-A new semi-analytical procedure is employed for the problem offreezin g a saturated liquid inside a
spherical container and including the effectof radiation at the container surface. Generally moving boundary
problems of this type involve a boundary layer analysis. Theapproximation scheme employed here avoids this
complication and gives rise to successive estimates of the time Ie for complete solid ification of the sphere. In
addition an integral formulation is adopted to independently establish bounds for Ie' The upper and lower
bounds obtained are the standard order one corrected estimate of Ieand the pseudo steady-state estimate of I"
respectively. Numerical values of the successive estimates for r, indicate firstly satisfactory convergence and
secondly that they arc indeed consistent with the bounds independently established. Numerical values
obtained for the position of the moving front are in agreement with previous results arising from both a

completely numerical solution and an alternative semi-analytical solution of the problem.
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THE MOVtNG boundary problem associated with
freezing liquids inside containers is relevant in many
industrial processes such as casting thermoplastics or
metals, freezing foods and producing ice. Generally
such problems do not admit closed analytical solut ions
and the governing equations must be solved either
numericaIly or by an approximate semi-analytical
procedure. The problems of freezing a saturated liquid
inside a sphere and including radiation at the surface
has been studied by a number of authors [1-3]. Semi
analytical techniques are employed in refs.[1, 2] while a
fuIly numerical treatment is given in ref. [3]. In general
owing to the occurrence of a thermal boundary layer as
the moving front approaches the centre of the sphere,
the full mathematical analysis of such problems
involves a fairly complicated asymptotic boundary
layer approach (see for example refs. [4-6]). Here we
present a new approximate analytical solution to the
problem which is meaningful up to and including the
time t, to complete solidification and therefore avoids a
boundary layer analysis. Moreover, we independently
establish upper and lower bounds for t.;

Consider a molten material inside a spherical
container of radius a and at its uniform fusion
temperature Te. Suppose the container issurrounded by
a coolant which is maintained at constant temperature
To then assuming constant physical properties of the
solid and negligible volume change in solidification the
temperature T*(r*, t*)ofthesolid and the radius R*(t*)
of the moving front can be described by the following

A.(x)

r\OMEr\CLATURE

R*(/*)
R(t)
1*

I/(r, I)

radius of spherical container
functions appearing in assumed
expansion for if>(x,y)
heat capacity of solid
heat transfer coefficient
thermal conductivity of solid
latent heat of fusion
polynomial expression in x of degree
11-2 (II ;?; 2)
position radius
dimensionless position rad ius
radius of moving front
dimensionless radius of moving front
time
dimensionless time

Ie time to complete solidification
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12e first-order corrected estimate of t,
t l e.t2e.t3C approximating estimates to t, deduced

from solution
Te fusion temperature
To coolant temperature
T*(r*, t*) temperature of solid
T(r, t) dimensionless temperature
Tt(r,/) pseudo steady-state estimate for T(r,/)
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system:

aT* = _k (a
2T* + _2 aT*) R*(t*) < r* < a,

at* pC cr*2 r* cr* '

et»
-k-~-(a,t*)=h{T*(a,t*)-To}, (I)

cr*

et» L dR*
T*[R*(t*) t*] = T. -- [R*(t*) t*] =~-

, t- ar* ' k dt*'

where R*(O) = a. In terms of the following dimension
less variables

series which on summation yields the required results.
For completeness we also give an independent
derivation of the pseudo steady-state and order one
corrected motions which are formally obtained by
assuming a series expansion of the form of equation (5)
and consistently neglecting terms of order CI.- 2 and
higher in comparison to the two leading terms.

From an independent integral formulation of the
problem similar to those given by Shih and Chou [2]
and Theofanous and Lim [10] we prove that tosatisfies
the inequalities

(8)

(9)

we suppose

lI(r, t) = ¢(x, y).

and after making the standard transformation

T(r, t) == lI(r, t)/r,

a
2¢

a¢ [a¢ a¢JIXy-=-(l,y) x--(y-I)- ,
ax 2 ax ax ay

a¢
fJ ax (O,y)+(I-fJ)(y-I)¢(O,y) = (y-l), (10)

a¢ dy
¢(I,y) = 0, ax (l,y) = -IXy(y-I)dt'

(I +2fJ):t./6 ~ to~ (l+2fJ)(IX + 1)/6. (6)

x = (r-I)/[R(t)-I], y = R(t), (7)

We observe that the lower bound is merely the pseudo
steady-state estimate for the time to complete
solidification while the upper bound is the order one
corrected estimate formally obtained from the first two
terms of series (5).The relevant details of this proof are
noted in a subsequent section. In the final section
numerical values for the position R(t) of the moving
front are shown to be in close agreement with those of
Shih and Chou [2] and Tao [3].

00

¢(x,y) == I An(x)(y-lt, (11)
n=O

It is now a simpler matter to show that system (3)
becomes

METHOD OF SOLUTION

In this section we describe briefly the solution
procedure which involves reducing the moving
boundaryproblem (3)to one with fixed boundaries. We
introduce new independent variables x and ydefined by

and y(O) = 1. In (10)1the arguments of¢ and its partial
derivatives are understood to be (x, y) unless otherwise
indicated. Moreover, we remark that in the derivation
of (10)1 we have utilized (10)4'

The above non-linear system can be formally solved
by assuming a series solution for ¢(x, y) of the form

where An(x)denote functions of x only. From equations
(10) and (11) we find that the functions An(x) are

(4)

(2)

kt*
t=--,

pCa2

R*
R=-,

a

r*
r=-,

a

where R(O) = 1and the constants IX and fJ are defined by

L k
IX = , fJ =-.

C(1f- To) ha

aT
T(I,t)+{Ja;:(l,t) = I, (3)

er dR
T[R(t),t] = 0, - [R(t),t] = -IX-

d
'

iJr t

'If-T*
T=---,

'If-To

system (1) for T(r, t) and R(t) becomes

er c2 T 2 or
-=-+-- R(t)<r< 1
at cr 2 r or' ,

Clearly since To < T* < 'If we have 0 < T < I for
R(t) < r < 1.

In the following section we outline a procedure for
obtaining an approximate analytical solution of system
(3). This procedure is based on one given recently by
Davis and Hill [7] for system (3) with the constant fJ
identically zero (that is, no radiation at the surface). The
case fJ = 0 was originally studied using a regular
perturbation series of the form [8]

T(r,t) = TI(r,t)+'12(r,t)/IX+Tir,t)/Cl.
2+O(CI.- 3

) . (5)

However, the terms of order IX - I and IX - 2 are singular as
R(t) approaches zero and consequently a full boundary
layer analysis is required (see refs. [4-6, 9]). By
appropriate choice of variables this difficulty is a voided
in ref. [7] and it would seem worthwhile applying the
method of ref. [7] to the case when the constant fJ is
strictly non-zero. We find that the mathematical details
are quite different to those given in ref. [7] and
moreover, the results of ref. [7] are not contained as a
special case in the present analysis.

In subsequent sections we summarize the main
results of the calculation leading to the motion of the
moving boundary and we' indicate how the result
obtained relates to the standard pseudo steady-state
and order one corrected motions. We find that these
latter approximations to the motion arise from the
analysis given here by assuming that certain terms in
the solution are in fact the first few terms of a geometric
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determined by solving In particular the values of A~(I) which are needed to
determine the mot ion of the moving front arc given by

(12)

00 dy
I A~(I)(y-l)· = -lXy(Y-I)-d' (14)

.=0 t

and yeO) = 1. From (12) and (13) we find that Ao(x) is
identically zero while the remaining A.(x) are obtained
simply by integrating equations of the form

(19)

MOTIO:'; OF l11E l\10VIN"G BOUN"DARY

A~(I)=O, A'I(I)=p-l,

A~(I) = (1-,)j:t.p2, A~(I) = (/-4t+O)jrx 2p3,

A~(l) = (0+30 2 +3-1510-3/+31/ -16,)j3:t3{14,

As(l) = (3,4 -65,3 + 112y2-46,+ 303

+"302+2+ 110-41i'0+46/0-18i'02)j3:t4p5.

(18)

We make use of these results in the following section to
determine an approximate expression for the motion of
the moving front.

In particular an approximating expression for the time
to to complete solidification can be obtained from (19)
by setting y zero, thus

From (14), (18) and the initial condition yeO) = 1 we
can deduce the following series for the motion of the
moving boundary

{
(y_l)2

t = -ap (y-I)+(1 +2y-O)--.
2IXP

(y_l)3 O'-W
+(/+3y-I-oJo)-- +(4,,- ,,2-0) - -

I 3:t2p2 I I 3Z3p3

+(5y3- 52,2 +28y - 5 - 502- 20+25yo)

0·-1)5 }
X 15:t4p4 + ....

(15)

(13)

A~(x) = p.(x),

A~(O) = 0, A.(I) = 0 (II ~ 0),

PA'I(O)+(1-p)A o(O) = I,

PA~(O)+(I-p)A._l(O) = 0 (II ~ 2),

where primes denote differentiation with respect to x
and in (12) the argument of A. is understood to be x
unless otherwise indicated. From (10)4 and (11) we find
that the motion of the moving front is obtained from

subject to the boundary conditions

where P.(x) denotes a polynomial expression in x of
degreell-2[1I ~ 2,Pl(X) = 0]. This isin contrast to the
problem P= 0 which gives rise to confluent
hypergeometric solutions for An(x) (see ref. [7]). The
final results for A.(x) are given in the following section.

p{
(I +2y-o)

r, = IX 1- 2IXP

SUl\I;\IARY OF RESULTS (i+3y-I-yo) (4y_ y2_ 0)

Introducing new constants y and 0 defined by + 3:t2p2' - 3:t3p3

(5,3 - 52,2 +28y - 5 - 5li2 - 20+25(0) }
y=IX(P-I),0=2-Cl, (16) + 15z 4fJ4 + ....

we find that the first six functions A.(x) are as follows: (20)

(x-I) (x-I)
Ao(x) = 0, AI(x) = -p-, Az(x) = 2IXfJ2 (x+ 1-2y),

(x-I) .
A3(x ) = 6:t2p3 {yx 2+(30-11y)x+(30-14y+6/)},

(x-I)
A4(x) = 24:t3f34 {(4y-o)x3+(4y-o)(I-4y)x2

+(I04j'2-56yo-68y+50+ 1202+ 12)x-(24y3-160,2 +68yo+68y-50-1202-12)},

(x-I)
A 5(x) = 1 4f35 {y(4y-o)x4+(40-/+ 79yli -136y2-10-1502)x3

20:t

+ (60-/+ 200-/ + 89yo - 256y2- 10- 1502+ 20y02- 100-/0)x 2

+ (- 1000y3 - 940y- 891yo+ 2264y2+ 800-/0 - 340,02+ 6003+ 7502+ 2200 + 50)x

+(120,4-1800-/ + 1140-/o-100(}/-916yo-40(}/02 + 2604},2+6003+ 750 2+220li+50)}. (17)



1634 JAMES M. HILL and ADAM KUCERA

(x-I)(y-I)
¢(x,y) = P

{1-}.+J..2_}.3+}.4+ ...}+o(l), (24)

Numerical values of various estimates for t, obtained
from (20) are given in the final section.

We observe from (19) on using (16) and neglecting
terms of order a-I and higher

It is ofinterest to note that the exact motion correct up
to order a-I can be deduced from (21)by assuming that
the series in the square brackets involving }. is the
geometric series with sum (I +}.)-I (assuming IJ.I < I).
Simplifying the result we obtain from (21)

{
(2P-I) 2 (P-I) 3}t = -ap (y-I)+--(y-l) +--(y-I)

2P 3P

+{(y_l)Z -,(P_l)(y_1)3 [1-}.+}.z+ ...]}+O(I),
2 3P

(21)

(31)

(30)

(29)

(27)

¢2(I,y) = O.

OZ¢Z (y-1)2[P+(P-l)x(Y-l)]
ox2 = y[I+(P_l)y]3

0¢2
Pa;- (0,y)+(1-PHy-l)¢2(0,y) = 0,

which using the above results simplifies to give

1 (y-IHpz+poo+ooz) dy-+ = -ay-
OJ 3ayoo4 dt'

where OJ is defined by

OJ = l+(P-l)y.

On rearranging equation (30),neglecting terms of order
a- z and higher and using

pZ+POJ+ooz = (P;=:3). (32)

we can deduce

dt = {-ayOJ+ 3(P~I) [00- ~:J}dY+O(I). (33)

This equation readily integrates to yield precisely
equation (23). The estimates for the time to complete
solidification arising from the pseudo steady-state
assumption and the first order correction are discussed
further in the final section.

solving

The final result for ¢2(X,y) is

(x-I)(y-If
¢z(x,y) = 6y[1 +(p-1)yr

x {(P-l)xz(y-I)[I+(P-I)y]

+[1 +(P-I)y] [(2P+ 1)+'(Jl-I)y]x

+P[(2P+l)+(P-I)y]}. (28)

Now from (10)4 and (26) we have

O¢I I o¢z dy
a;-(l,y)+;; fu(l,y) = -ay(Y-l)dt'

(22)

(23)

}. = (P-l)(y-l)Jf:l.

a
t = __ {2(P_I)y3+3yz_(2P+I)}

6

(y_l)Z {(2P+ l)+(P-l)y} (1)
+ 6 I+(P-l)y +0,

where }. is defined by

which can of course be deduced more directly from an
assumption of the form (5). For completeness the
essential details of such a calculation are given in the
following section using the (x, y) variables and equation
(10) for ¢(x,y).

Finally in this section we observe that the first term of
(23) is precisely the pseudo steady-state result and
moreover that the pseudo steady-state expression for
¢(x,y) can be seen to arise from (11) and (17) by
retainingonly the terms of order one in expressions (17).
We find that

(34)

where }.is given by (22). Again on assuming the series
involving}. is the geometric series and that IJ.I <·1 we
obtain in a straightforward manner

(x-l)(y-I)
¢(x,y) = [l+(P-l)y] +0(1), (25)

which is precisely the pseudo steady-state result.

DIRECT DERIVATION OF

FIRST ORDER CORRECTION

If for large a we assume

where ¢I(x,y) is the pseudo steady-state result given in
(25) then from (10) we find that ¢Ax,y) is obtained by

UPPER AND LOWER BOUNDS FOR r,

On multiplying (3)1 by rZ
, integrating the resulting

equation with respect to r from R(t) to r and using (3)4
we obtain after a division by r 2

oT (r, t)+ a (R(t»)Z dR
or r dt

f' (~)Z et= - -(~,t)d~.
R(t) r ot

A further integration of this equation with respect to r
from R(t) to r and using (3h yields

Y(r, t) = {aR(t)Z (~ __1_)
r R(t)

+~(f' ~2(.!-_~)T(~,t)d~)}dR, (35)
oR R(t) ~ r dt
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where iJ/iJR denotes partial differentiation with respect
to R with rand R as independent variables. From (34),
(35) and the surface boundary condition (3h we can
deduce

{aR(t)[(l- fJ)R(t)-I]

+ iJ~(L(f) {[(P-l)~+I]T({,t)d~)} ~~ = 1. (36)

From equations (35) and (36) on eliminating dR/dt we
obtain the following integral formulation of the
problem, namely

Table I. Numerical values of estimates defined by equations
(40)and (41) for various values of IX and p= 5.0

lie t: IJe I,e 12e
IX (40) (40) (40) (41) (41)

0.5 1.55 1.42 1.17 0.92 2.75
1.0 2.53 2.55 2.38 1.83 3.67
2.0 4.40 4.51 4.47 3.67 5.50
5.0 9.92 10.09 10.17 9.17 11.00

10.0 19.09 19.28 19.41 18.33 20.17
100.0 184.1 184.3 184.5 183.3 185.2

{ aR(t)2(!__1)+ ~(fr e(~ -!)T({,t) de)}
)

_ r R(t) iJR R(f) e r

T(r,t - { iJ (II )}'
aR(t)[(I- P)R(t)-I] + oR Ref) WP -1)~+ I]T(~, t) d~

(37)

(40)

which is similar, although not identical to integral
formulations given in ref. [2] for P:p0 and in ref. [10]
for P= O.We also observe that the pseudo steady-state
solution for the problem emerges immediately from
equation (37) by retaining only the a'terms in both the
numerator and the denominator of equation (37).

More importantly we observe that equation (36)can
be formally integrated immediately to give the
following expression for the motion of the moving
boundary, namely

a
t = 6[2(1- P)R(t)3-3R(t)2 +(1 +2fJ)]

+fl WP-lg+l]T(.;,t)d~, (38)
R(/)

where we have used R(O) = 1.Thus in particular for t,
we have

and the inequalities (6) follow immediately from
equation (39) on making use of 0 ~ T(r,t) ~ 1 and
noting that Pis non-negative.

7. NUl\IERICAL RESULTS

From (20) we obtain the following estimates for the
time t, to complete solidification

- _ a{l_ (1+2)'-15) ()'2+3)'-I-YD)}
tie - al' 2ap + 3~I.2p2 '

- _ a{1 (l +2)'-15)
t2< - al' - 2cx{J

(y2+3y-l-YD) (4y- y2-D)}

+ 3X2p2 - 3X3p3 '

- _ a{1_(1+2Y-D)
t3< - al' 21X{J

(y2+3y-l-,D) (4,-)'2-15)
+ 3X2{J2 - 31X3{JJ

(5y3- 52y2+28y- 5 - 5152
- 215 +25YD)}

+ 151X4 p4 •

From (23)with y = Oweobtain the pseudo steady-state
and first order corrected estimates to t.; namely

tic = a(2{J+ 1)/6, t 2 c = (x+ 1)(2P+1)/6. (41)

Numerical values of the above estimates are given in
Table 1for various values ofa and (J = 5.0.Firstly these

0.6

....
Q;: 0.4 ~

')'"
'l).

'\
0 .2 "-v.

v-.
"

0

FIG. I. Variation in R(t) as given by(19) with I/C[(for a = 2and three values ofP).This work ...... "',Shih and
Chou [2] --,Tao [3] ---.
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FIG. 2. Variation in R(t) as given by (19)with I/rx(for(J. = 10and three values of P). This work·········, Shih and
Chou [2] --,Tao [3] ---.

results indicate reasonable convergence of the
estimates tic' t2c and t3c and secondly they are
consistent with 12c and tic as upper and lower bounds,
respectively. As far as the authors are aware these
bounds have not been noted previously and may be
useful in a practical context.

Figures 1 and 2 show the variation of position R(t)
with time for a = 2 and 10, respectively, and three
values of fl. The numerical values based on (19) are
clearly in general agreement with those of refs. [2, 3].
We note, however, the discrepancies for the time to
complete solidification with this work and Shih and
Chou [2] in the case a = 2 and fl = 4.This observation
is consistent with comments of Shih and Chou [2] who
indicate their semi-analytical procedure is more
accurate for smaIl fJ. In contrast series (19)and (20) are
seen to converge more rapidly for large fJ and therefore
in this sense the procedure described here is
complementary to that of Shih and Chou [2].
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Davis for helpful comments and Jeffrey N. Dewynne for
assistance with the proof of inequalities (6).They also wish to
acknowledge the comments of a referee of an earlier version
which led to a materially improved presentation of the paper.
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CONGELATION D'UN LIQUIDE SATURE DANS UNE SPHERE

Resume-On emploie une procedure semi-analytique pour Ie problerne de fa congelation d'un liquide sature
dans un reservoir sherique en inc1uantl'effet du rayonnement ala surface. Les problernes de frontiere mobile de
ce type utilisant generalement une analyse de couche limite. Le schema employe ici evite cette complication et
conduit ades estimations successives du temps Iede solidification complete de fa sphere. Une formulation
integrale est adoptee pour etablir independamrnent des liens pour Ie' Les liens superieur et inferieur obtenus
sont respectivement I'estimation corrigee d'ordre un et I'esimation de pseudo-etat permanent de Ie' Les valeurs
numeriques des imations successives de t, montrent une convergence satisfaisante et aussi une coherence avec
les liens etablis independamment. Les valeurs numeriques obtenues pour la position du front mobile sont en
accord avec des resultats anterieurs obtenus par une solution cornpletement nurnerique et par une solution

semi-analytique alternee.
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ERSTARREN EINER GESATTIGTEN FLOSSIGKEIT INNERHALB EINER KUGEL

Zusammenfassung-Ein neues halban alyt isches Verfahren wird auf das Problem des Gefrierens einer
gesattigten F1iissigkeit in einem ku gelforrnigen Behalter angewandt, wobei der StrahlungseinfiuB der
Behfilteroberfl fiche beriicksichtigt wird. 1m allgerneinen erfordern derartige Probleme mit forl schreitender
Grenzflache eine Grenzschichtan alyse. Das Naherungsverfahren, das hier angewandt wird, vermeidet diese
Komplikation und ermoglicht die sukzcssive naherungsweise Berechnung der Zeit 'e fiir die vollstiindige
Vcrfestigu ng der Kugel. Zusiitzlich wird cin e In tergralformulierung her angezog en, urn unabhiingig d ie
Grenzen fiir t; zu berechnen. Die oberen und unteren Grenzen sind der verbe sserte Naherungswert erster
Ordnung fiir t, beziehungsweise der quasistationiire Naherungswert von Ie' Die numerischen Werte der
sukzessiven Niiherungsrechnung fiir t e zeigen erstens eine befriedigende Konvcrgenz und stimmen zweitens
gut mit den unabhangig errnittelten Grenzen iibere in. D ie Zahlenwerte fiir die Position der fortschreitenden
Erstarrungsfront stehen in Einklang mit friiheren Ergcbnissen, die einmal aus einer vollst iindig numerischen

Losung und auBerdem aus einer altcrnativen halbanalytischen Losung des Problems starnmen.

3ATBEP.lJ.EBAHI1E HACblWEHHOlI )I(H.lJ.KOCTI1 BHYTPI1 ClPEPbl

Auuorauaa-c-Hcnonsayercx noaas IIplloml;Kellllali sreronnxa peuieuns aanaxu aaracpneaamrs
nacsrurenaotl lKll.LIKOCTlI snyrpu c¢cplI'lecKoii 060:IO'lKII c Y'leTO~1 a.ll111lllll! mnyxenna, nanarouiero
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